Low microRNA-199a expression in human amniotic epithelial cell feeder layers maintains human-induced pluripotent stem cell pluripotency via increased leukemia inhibitory factor expression.

نویسندگان

  • Te Liu
  • Qing Chen
  • Yongyi Huang
  • Qin Huang
  • Lizhen Jiang
  • Lihe Guo
چکیده

Human-induced pluripotent stem (iPS) cells share the same key properties as embryonic stem cells, and may be generated from patient- or disease-specific sources, which makes them attractive for personalized medicine, drug screens, or cellular therapy. Long-term cultivation and maintenance of normal iPS cells in an undifferentiated self-renewing state is a major challenge. Our previous studies have shown that human amniotic epithelial cells (HuAECs) could provide a good source of feeder cells for mouse and human embryonic stem cells, or spermatogonial stem cells, as they express endogenous leukemia inhibitory factor (LIF) at high levels. Here, we examined the effect of exogenous microRNA-199a regulation on endogenous LIF expression in HuAECs, and in turn on human iPS cell pluripotency. We found that HuAECs feeder cells transfected with microRNA-199a mutant expressed LIF at high levels, allowing iPS to maintain a high level of alkaline phosphatase activity in long-term culture and form teratomas in severe combined immunodeficient mice. The expression of stem cell markers was increased in iPS cultured on HuAECs feeder cells transfected with the microRNA-199a mutant, compared with iPS cultured on HuAECs transfected with microRNA-199a or mouse embryo fibroblasts. Taken together, these results suggested that LIF expression might be regulated by microRNA-199a, and LIF was a crucial component in feeder cells, and also was required for maintenance of human iPS cells in an undifferentiated, proliferative state capable of self-renewal.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Foxm1 Mediates LIF/Stat3-Dependent Self-Renewal in Mouse Embryonic Stem Cells and Is Essential for the Generation of Induced Pluripotent Stem Cells

Activation of signal transducer and activator of transcription 3 (Stat3) by leukemia inhibitory factor (LIF) is required for maintaining self-renewal and pluripotency of mouse embryonic stem cells (mESCs). Here, we have confirmed transcription factor Forkhead Box m1 (Foxm1) as a LIF/Stat3 downstream target that mediates LIF/Stat3-dependent mESC self-renewal. The expression of Foxm1 relies on LI...

متن کامل

Stem cell characteristics of amniotic epithelial cells.

Amniotic epithelial cells develop from the epiblast by 8 days after fertilization and before gastrulation, opening the possibility that they might maintain the plasticity of pregastrulation embryo cells. Here we show that amniotic epithelial cells isolated from human term placenta express surface markers normally present on embryonic stem and germ cells. In addition, amniotic epithelial cells e...

متن کامل

MicroRNA-32 silences WWP2 expression to maintain the pluripotency of human amniotic epithelial stem cells and β islet-like cell differentiation

Human amniotic epithelial stem cells (HuAECs) exhibit pluripotent characteristics, which are similar to those of embryonic stem cells, and can differentiate into various adult tissues and cells through directed induction. However, in culture, HuAECs tend to lose their pluripotency, and their directed differentiation capability declines with increasing passage number. The stem cell pluripotency ...

متن کامل

Small-Molecule Induction Promotes Corneal Epithelial Cell Differentiation from Human Induced Pluripotent Stem Cells

Human induced pluripotent stem cells (hiPSCs) offer unique opportunities for developing novel cell-based therapies and disease modeling. In this study, we developed a directed differentiation method for hiPSCs toward corneal epithelial progenitor cells capable of terminal differentiation toward mature corneal epithelial-like cells. In order to improve the efficiency and reproducibility of our m...

متن کامل

Analysis of Promyelocytic Leukemia in Human Embryonic Carcinoma Stem Cells During Retinoic Acid-Induced Neural Differentiation

Background: Promyelocytic leukemia protein (PML) is a tumor suppressor protein that is involved in myeloid cell differentiation in response to retinoic acid (RA). In addition, RA acts as a natural morphogen in neural development. Objectives: This study aimed to examine PML gene expression in different stages of in vitro neural differentiation of NT2 cells, and to investigate the possible role o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Acta biochimica et biophysica Sinica

دوره 44 3  شماره 

صفحات  -

تاریخ انتشار 2012